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[1] A multimodel ensemble air quality forecasting system was created as part of the New
England Air Quality Study (NEAQS-2004) during the summer of 2004. Seven different
models were used, with their own meteorology, emissions, and chemical mechanisms. In
addition, one model was run at two different horizontal grid resolutions, providing a total of
eight members for the ensemble. Model forecasts of surface ozone were verified at 342
sites from the EPA’s AIRNOW observational network, over a 56 day period in July and
August 2004. Because significant biases were found for each of the models, a simple 7-day
running mean bias correction technique was implemented. The 7-day bias correction is
found to improve the forecast skill of all of the individual models and to work nearly
equally well over the entire range of observed ozone values. Also, bias-corrected model
skill is found to increase with the length of the bias correction training period, but the
increase is gradual, with most of the improvement occurring with only a 1 or 2 day bias
correction. Analysis of the ensemble forecasts demonstrates that for a variety of skill
measures the ensemble usually has greater skill than each of the individual models, and the
ensemble of the bias-corrected models has the highest skill of all. In addition to the higher
skill levels, the ensemble also provides potentially useful probabilistic information on the
ozone forecasts, which is evaluated using several different techniques.
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1. Introduction

[2] During the summer of 2004 the International Con-
sortium for Atmospheric Research on Transport and Trans-
formation/New England Air Quality Study (ICARTT/
NEAQS-2004) multiagency air quality field program took
place in New England. The goals of the NEAQS field study

were to understand the meteorological and chemical pro-
cesses affecting air quality in New England, to evaluate
developmental numerical air quality forecast models for this
region, and to improve the forecasts from these models.
[3] One method for improving air quality forecasts is

through the use of an ensemble forecast system. Increased
forecast skill is a well-known advantage of meteorological
ensemble forecast systems compared to single deterministic
models (Palmer and Hagedorn [2006] and Kalnay [2003]
provide reviews of meteorological ensemble forecasting). In
addition to improved skill, ensembles provide quantitative
probability information that one cannot get with individual
deterministic models. This probability information (e.g.,
that there is a 70% chance of an ozone violation today)
has the potential to significantly improve the value of the
predictions that state and local air quality district forecasters
routinely provide to the public.
[4] As part of the NEAQS field program, surface ozone

forecasts from eight models were collected and displayed in
real time. These models include (1) the NOAA/National
Weather Service’s Eta-CMAQ model, run in a developmen-
tal mode in New England during the summer of 2004;
(2) the Canadian Hemispheric and Regional Ozone and NOx

System (CHRONOS) model from the Meteorological Ser-
vice of Canada; (3) A Unified Regional Air-quality Mod-
eling System (AURAMS), also from the Meteorological
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Service of Canada; (4) the Weather Research and Forecast-
ing (WRF)–Chem model run at 27 km resolution, provided
by NOAA/ESRL/Global Sciences Division; (5) a second
WRF-Chem forecast, using a different set of physical
parameterization schemes, and run at 12 km resolution;
(6) the Baron’s Advanced Meteorological Systems, Inc.
(BAMS) MM5-MAQSIP model run at 45 km resolution;
(7) a 15 km version of the same BAMS model; and (8) the
University of Iowa Sulfur Transport and Emissions Model,
2003 (STEM-2K3).
[5] Because of the large number of models that provided

ozone forecasts during NEAQS-2004, it was possible to
create for the first time a multimodel ozone ensemble
consisting of a large number of diverse individual members
that use different meteorological models, different chemical
emissions inventories, and different chemical mechanisms.
Experience from meteorological ensemble forecasts has
shown an improved accuracy of multimodel ensembles
compared to ensembles generated from a single model but
using different initial conditions [Ziehmann, 2000; Stensrud
and Yussouf, 2003], and it seemed likely that the same
would apply to ozone forecasts. This expectation has
recently been confirmed by Delle Monache et al. [2006]
who analyzed an ozone forecast ensemble using two mete-
orological models run at two different resolutions as input to
an air quality model. The use of ensembles [Dabberdt and
Miller, 2000; Straume, 2001; Draxler, 2002; Warner et al.,
2002], and multimodel ensembles [Galmarini et al., 2004a,
2004b] has also recently been proven to be useful for
atmospheric dispersion models, which can be more complex
than meteorological forecast models, but do not contain the
sophisticated chemistry model components present in the
NEAQS-2004 air quality models.
[6] An earlier analysis of the NEAQS-2004 data set

[McKeen et al., 2005] examined the skill of the ensemble
mean ozone forecast using simple statistical measures,
and also examined the benefit of correcting the models
using the biases calculated over the entire experimental
period, which cannot be done for real-time forecasting. In
the present analysis we seek to determine the improve-
ment in model forecast skill obtained by applying a
simple running mean bias correction technique that can
be applied in real-time, and to examine the skill improve-
ment and other benefits of an ensemble model ozone
forecast. These two techniques are investigated on their
own and in combination. Therefore this analysis extends
the work of McKeen et al. [2005] by evaluating a bias
correction technique that can be implemented in real-time,
and also by examining the value of the ensemble using
probabilistic skill measures that are commonly used for
meteorological forecasts. Pagowski et al. [2005] also used
the NEAQS data set to investigate the use of a weighted
model ensemble, and provided a cursory analysis of
ensemble skill using that technique. The present analysis
takes a complimentary approach to forming the ensemble,
and extends the examination of ensemble model skill
within a probabilistic framework.
[7] In section 2 we discuss the models and observations.

Section 3 contains a description of the bias correction
technique, and an examination of simple skill measures of
the models and their ensemble mean. Section 4 contains an

analysis of ensemble probability forecasts, and the summary
and conclusions are given in section 5.

2. New England Air Quality Study, 2004:
Observations and Models

[8] The domains of the models that provided ozone
forecasts for the NEAQS-2004 field study are shown in
Figure 1. A brief description of each of the models is given
below, and a summary of key features of each model are
listed in Table 1, including emissions. More detailed
descriptions of the models and Web site links for many of
the models are given by McKeen et al. [2005].

2.1. NOAA/National Weather Service Eta-CMAQ

[9] The ozone forecast capability of this model was in
experimental testing mode during the summer of 2004, and
was first implemented into operations over the northeast
United States in September 2004. It was expanded in
operations to cover the Eastern United States in August
2005. The model uses meteorological fields provided by the
NWS operational Eta model, which are used to drive the
CMAQ photochemical transport model [Byun and Ching,
1999]. Conversion of the meteorological data to the CMAQ
grids is accomplished with the PREMAQ preprocessor.

2.2. Meteorological Service of Canada CHRONOS

[10] The CHRONOS model has provided operational
ozone forecasts for Canada and the northern U. S. since
2001. Meteorological fields are provided by the regional
version of the Global Environmental Model (GEM), the
Canadian operational weather prediction model. CHRO-
NOS uses the Acid Deposition and Oxidant Model-2
(ADOM-II) chemical mechanism [Ryerson et al., 2001].

2.3. Meteorological Service of Canada AURAMS

[11] The AURAMS model is similar to CHRONOS with
regard to its ozone predictions, but was designed to have the
additional capability for forecasting regional particulate
matter. AURAMS uses the same chemical mechanism,
anthropogenic emissions of gaseous precursors, and bio-
genic emission assignments between vegetative assignments
as CHRONOS. The principal differences from CHRONOS
are that the AURMAS biogenic emissions are tied to the
surface vegetation types specified using BEIS1 [e.g., Lamb
et al., 1993], and it runs on a coarser horizontal grid.

2.4. Baron AMS (BAMS) MAQSIP-RT

[12] The Multiscale Air Quality Simulation Platform,
Real-Time (MAQSIP-RT) [McHenry et al., 2004] uses the
MM5 (version 3.6) mesoscale meteorological model, and an
upgraded version of the Carbon Bond 4 (CBM-4) chemical
mechanism. Two different horizontal resolution (45 and
15 km) simulations from MAQSIP-RT were available
using the identical model physics and chemistry. Two
separate 15 km simulations were provided covering differ-
ent domains. These were combined to generate a single
data set used in this analysis. In both cases, the 15 km
grids were spawned 6 hours into the 45 km forecast, and
used the 6-hour 45 km chemistry and meteorological
forecasts as (interpolated) initial conditions.
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2.5. University of Iowa STEM-2K3

[13] The University of Iowa STEM-2K3 model [Tang
et al., 2003; Carmichael et al., 2003] uses MM5 generated
meteorological fields together with the SAPRC-99 gas-
phase chemical mechanism [Carter, 2000]. The STEM-
2K3 model used a nested grid approach, with resolutions
of 60, 12, and 4 km. Because the 4 km domain covered only
a small geographic area in New England, results from the
12 km grid are used in this analysis.

2.6. NOAA/Forecast Systems Laboratory WRF-Chem

[14] The Weather Research and Forecasting (WRF)
chemical model uses the mass coordinate WRF community
meteorological model [Grell et al., 2005], combined with
gas-phase chemistry based upon the RADM2 chemical
mechanism [Stockwell et al., 1990; Stockwell et al., 1995].
Two different model horizontal resolutions were run, at
27 and 12 km. However, since the initialization and physics
options were significantly different between the two sets of
simulations (Mellor-Yamada-Janjic Eta PBL, 5-class WSM
microphysics, Runge-Kutta advection of scalars, Eta initial
and boundary conditions for the 27 km runs;YSUPBL, 6-class
WSM microphysics, PPM advection of scalars, and RUC
initial and boundary conditions for the 12 km runs) the two are
considered to be separate models.
[15] All models except for WRF-Chem used meteorolog-

ical fields calculated offline from their meteorological
model components. WRF-Chem is unique among the mod-
els in that its chemistry is calculated online at every model
time step, with identical model grids used for both the
meteorology and chemistry.
[16] Each of the models provided forecasts for at least

28 hours after initialization at 00 UTC (20 LST), except

for Eta-CMAQ and BAMS 15 K, both of which were
initialized at 06 UTC (02 LST). Therefore daily values of
1-hour and 8-hour maximum ozone are calculated for a
22-hour period beginning at 06 UTC for each model. Also,
output from the Eta-CMAQ, CHRONOS, BAMS 15, and
BAMS 45 models were each missing 1 day’s output during
the 56 day experiment. These days with partial model data
were included in the statistical analysis.
[17] Hourly averaged ozone values were provided by

Sonoma Technology Inc. in real-time from the AIRNow
network during the NEAQS-2004 field program for 56
consecutive days from 6 July to 30 August 2004. The
observed daily maximum ozone values at each of 342
AIRNow stations are calculated using hourly data over
the same 22-hour periods starting at 06 UTC as the models.
If more than two hourly averages are missing within a given
22-hour period, a missing value is reported for the maxi-
mum ozone on that day.
[18] Although 1-hour and 8-hour maximum ozone concen-

trations are regulatory quantities of interest, we also investi-
gate model skill on an hourly basis, as variations in skill
through the diurnal cycle can provide insights into the
physical and chemical causes of model error. The AIRNow
observed ozone values are hour averages centered on the half-
hour. The Eta-CMAQ model also provided hourly averaged
values centered on the half-hour. However, the WRF, STEM,
CHRONOS, and AURAMS models provided instantaneous
values at the top of each hour. For these models an hourly
average value centered on the half-hour was calculated as the
average of the two adjacent hourly instantaneous values. The
two BAMS simulations provided half-hourly instantaneous
values, fromwhich a (1/4, 1/2, 1/4) weighted average of three

Figure 1. Base maps for the New England Air Quality, 2004, field study: (a) the domains for the eight
models that provided forecasts and (b) locations of 342 AIRNOW surface ozone sites in the northeastern
United States and southern Canada that are located within the region of common overlap of the eight
models.

D23S28 WILCZAK ET AL.: BIAS-CORRECTED ENSEMBLE

3 of 15

D23S28



values was used to obtain an hour average centered on the
half-hour.

3. Running Mean Bias Correction and
Deterministic Statistics

[19] Weather forecasters have long recognized that post-
processing of model predictions will give much improved
forecasts of surface variables such as temperature and
dewpoint. One of the principal reasons for this is that
despite decades of refinement and improvement, meteoro-
logical models still contain significant model physics
errors. Air quality models, which rely not only on the
meteorological model but also on a chemical model, and on
highly uncertain emission inventories, are likely to have
even greater model errors. A second reason for post-
processing of model forecasts is that the point sites used
for verification may not be representative of the actual
concentrations averaged over an area equal to that of a
model grid cell.
[20] Various methods of bias correction are possible.

McKeen et al. [2005] considered the relative impact of
using a mean subtraction bias correction (as used in this
study) and a multiplicative, or ‘‘ratio adjustment’’ bias
correction. The ratio adjustment method provided better
skill (using a variety of statistical measures) for those
models that had too little ozone variance compared to the
observations. However, for models that had a nearly correct
variance (as did the mean ensemble) or too large of a
variance, the mean subtraction method provided nearly
identical RMS errors, but much better Critical Success
Index (CSI) values than did the ratio adjustment method.
Since in this analysis we focus on the skill of the ensemble,
we have chosen to use the mean subtraction method.
[21] Figure 2 shows the mean observed surface ozone for

hours 06–28 of the forecast window, averaged over the
days of the field program, and over the 342 AIRNOW sites.
Predictions for each of the eight air quality models are also
shown, using the model gridpoint closest to each observa-
tion point for comparison. The diurnal peak of the observed
ozone occurs at 21 UTC (17 LST). We note that all of
the models have their peak ozone occurring between 1 and
2 1/2 hours earlier than the observed peak. The reason why
a bias correction is needed is immediately apparent, with all
of the models showing a positive bias in the daily maximum
ozone of between 5–25 ppbv.
[22] Also shown in Figure 2 are values for two ozone

ensembles. The first is the straight ensemble mean, calculated
as the arithmetic average of the eight model forecasts. The
second is a bias-corrected ensemble, calculated as follows.
First, for each model at each forecast time and at each
observation site, the bias is calculated for each of the previous
7 days and then averaged. This bias is then subtracted from
today’s forecast to obtain a bias-corrected forecast, which is
model specific, site specific, and time of day specific. After
each individual model is bias corrected, these are averaged to
get the bias-corrected ensemble prediction. The dark blue line
in Figure 2 shows the ensemble mean of the 8models, and the
red line shows the 7-day bias-corrected ensemble mean,
which is virtually identical to the observed value (black line).
We note that because the bias correction is linear, the
ensemble mean of the bias-corrected models is the same asT
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calculating the ensemble mean first and then applying a bias
correction. However, calculating the bias correction first
allows for additional statistics to be calculated for the indi-
vidual models. Because of the 7-day bias correction, all of the

curves shown in Figure 2 are for days 8–56 (49 days total) of
the field program.
[23] Histograms of model forecast errors of the daily

maximum 1-hour surface ozone are shown in Figure 3,

Figure 3. Histograms of model forecast errors (model observation) of the daily maximum 1-hour
surface ozone for (a) eight air quality models and their ensemble mean and (b) eight bias-corrected
models and their bias-corrected ensemble mean.

Figure 2. Northeastern U.S. average surface ozone predictions for eight air quality models, their
ensemble mean, and the bias-corrected mean, for hours 6–28 of a set of 28-hour forecasts made over
49 days at 342 sites during the summer of 2004, following the color scheme for the various models
listed at the top of the figure. Also shown is the observed average surface ozone (black line), which is
nearly coincident with the bias-corrected ensemble mean (red line).
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with and without bias correction. The high bias of the eight
models before bias correction is readily apparent in Figure 3a
as a shift of the peak of the distribution to toward positive
values, as a positively skewed distribution, or both. Appli-
cation of the bias correction technique to the individual
forecast models (Figure 3b) shifts the peak of each error
distribution to be close to zero, and reduces the skewness of
each model (note the different range of the x axis in the two
panels.) Also, the bias-corrected ensemble, shown in red, has
a narrower distribution (smaller ozone errors) than any of the
individual bias-corrected models with the most predictions
with zero error, and the fewest large errors at the tails of the
distribution.
[24] The selection of a 7 day period for the calculation of

the running mean bias correction was a largely ad hoc
choice, based on the assumption that a longer averaging
period would be better than a shorter period, up until the
point that seasonal effects become important. Figure 4
illustrates the dependence of the square of the correlation
coefficient (r2), RMSE, and MAE [Wilks, 1995] on the
length of running mean averaging time, for each of the
models and their ensemble, from zero days (no bias correc-
tion) out to 10 days.
[25] For the 4 models with the largest bias errors (STEM,

CHRONOS, WRF1, and Eta-CMAQ) the MAE and RMSE
improve for all values of length of the bias correction, even
1 day. For the remaining four models that have smaller bias

errors (BAMS 15, BAMS 45, WRF2, and AURAMS), the
MAE and RMSE increase for a bias correction length of
1 day, then slowly decrease for longer times. At 7 days the
MAE and RMSE for each of the bias-corrected models and
the bias-corrected ensemble are smaller than with no bias
correction.
[26] The dependence of r2 on the length of the bias

correction is somewhat smaller than MAE and RMSE,
and more complex. The significant improvement in r2 that
is obtained from the bias-corrected ensemble compared to
even the best performing individual bias-corrected models is
readily apparent, and is relatively larger than the improve-
ment found for MAE and RMSE. However, seven of the
eight models (the exception being AURAMS) show smaller
r2 values when using a 1-day bias correction compared to no
correction. For longer correction lengths between 1 and
10 days, r2 values for the eight models and the bias-corrected
ensemble increase monotonically, with values at 7 days
always greater than those with no correction. AURAMS is
distinct in that its r2 value initially increases at 1 day, and
then decreases for correction lengths out to 7 days, before
increasing again for longer correction lengths. However,
even at 7 days, r2 for AURAMS is larger than it is with no
correction.
[27] Next, we compare two simple gross statistical meas-

ures of model skill for each of the eight models and
ensemble, with and without bias correction, using both

Figure 4. Correlation coefficient squared, RMSE, and MAE for each of the individual bias-corrected
models as a function of time for the 1-hour maximum ozone concentration. The bias-corrected ensemble
is shown in red.
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1-hour and 8-hour maximum values (Figure 5). Mean
Absolute Error (MAE) is shown in the top two panels,
and the RMSE is shown in the bottom two panels. For
each of these pairs of panels the upper panel contains the
uncorrected model statistics, and the lower panel contains
the bias-corrected statistics. A pair of columns is shown
for each model, with the height of the columns indicative
of the size of the error and with the left (open) column
showing the 1-hour error and the right (solid) column
showing the 8-hour maximum ozone error. Errors using
persistence and climatology forecasts are shown as horizon-
tal solid and dashed lines, with persistence being the error
using a forecast value equal to the previous days observed
1-hour maximum ozone value and climatology being the
error using a forecast value equal to the mean daily 1-hour
maximum ozone value observed over the entire field pro-
gram. The persistence and climatology lines are the same in
the top two panels and in the bottom two panels.
[28] From Figure 5, several points are readily apparent.

First, the 1-hour and 8-hour maximum ozone error statistics
are very similar, with a slightly smaller error for the 8-hour
values for almost all of the models. The smaller errors for

8-hour maximum ozone are not surprising, as the longer
averaging time helps reduce short timescale meteorological
variability (e.g., cloudiness, wind direction shifts, etc.) that
will be difficult for a model to reproduce accurately and
that can significantly alter the 1-hour peak value. Second,
for every individual model, the bias correction technique
improves the MAE and RMSE. Third, the skill of the
ensemble is very similar to both persistence and climatol-
ogy, but the bias-corrected ensemble is considerably better
than both. The percent reduction of error for the bias-
corrected ensemble compared to the uncorrected ensemble
is 28% for 1-hour MAE, 34% for 8-hour MAE, 26% for
1-hour RMSE, and 32% for 8-hour RMSE. Finally, one
pair of model forecasts were run with identical models, but
a factor of 3 difference in horizontal model resolution
(BAMS 45 K and BAMS 15 K). Despite the significantly
higher horizontal resolution of BAMS 15 K, it has only
marginally improved MAE and RMSE statistics.
[29] The bias correction technique so far has been found

to improve the gross statistics of all of the models and their
ensemble, whether considering all ozone values or daily
1-hour and 8-hour max values. However, because days

Figure 5. Mean Absolute Error (MAE) (top two panels, with and without bias correction) and the
RMSE (bottom two panels, with and without bias correction) for each model. The skill from climatology
is shown as a solid horizontal line, persistence is shown as a dashed line, with red for the 1 hour
maximum and blue for the 8 hour maximum. The open colored boxes show the 1-hour maximum ozone
error statistics, and the solid colored boxes show the 8-hour max ozone error statistics.
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with high ozone are of the greatest concern, it is impor-
tant to know whether the bias correction technique works
equally well on high ozone and moderate or low-ozone days.
Frequently this is done by considering the statistics of ozone
violations, periods when the ozone exceeds the thresholds of
120 ppbv for the daily 1-hour maximum, and 85 ppbv for the
8-hour maximum. The summer of 2004 in the Northeastern
U. S. as was atypical for ozone, however, with few ozone
violations, with only 4 out of 19,097 (0.02%) daily 1-hour
maximum concentration observations exceeding 120 ppb.
Therefore we examine scatterplots of the observed versus
ensemble and bias-corrected ensemble predictions of 1-hour
maximum ozone (Figure 6), and consider the effect of the
bias correction technique at differing values of observed
ozone concentrations.
[30] As seen in Figure 6a, the ensemble overpredicts the

1-hour maximum ozone on average for the entire range of
observed ozone values, although the magnitude of the
overprediction decreases toward the high end of the ob-
served maximum ozone values. The bias correction tech-
nique results in near zero residual bias for observed ozone
values less than about 85 ppb, but has a tendency to produce
too large of a correction for observed ozone values greater
than 90 ppb (Figure 6b). However, we note that the number
of observations greater than 85 ppb is still relatively small
(3.2% of the total number of daily 1-hour max observa-
tions), and that it would be useful in the future to test the
bias correction technique on a data set with a greater
number of high ozone values.
[31] Additional statistical inferences can be drawn from

the creation of a contingency table, which is a scatterplot of
the ozone data stratified into distinct categories. In our
analysis we stratify the model and observed ozone data into
10 ppb increments, which is a compromise between having
a wide enough bin to get a statistically meaningful number
of points within each bin, but sufficient resolution to

delineate trends in the statistics. Figure 7 displays five
common statistics of the categorical data [Wilks, 1995] as
a function of the observed 1-hour maximum ozone concen-
tration (divided into 10 ppbv ozone bins), for both the
ensemble and bias-corrected ensemble. These statistics are
the Frequency Bias (FB), Percent Correct (PC), False Alarm
Ratio (FAR), Probability of Detection (POD), and Critical
Success Index (CSI).
[32] The first statistic, the frequency bias, is the number

of forecasts divided by the number of observations within
each ozone bin, and ideally should be unity. FB for the
ensemble is low at small values of observed 1-hour max
ozone, and increases monotonically with increasing ozone.
For the bias-corrected ensemble FB is near unity for ozone
values up to 80 ppb, but then becomes small for higher
ozone values. This indicates that the raw ensemble has a
smaller bias on the highest-ozone days than on low or
moderate ozone days, as seen in Figure 6. The PC is the
summation of the diagonal elements of the contingency
table divided by the total number of events and also has an
ideal value of unity. The PC increases with ozone level, and
is larger for the bias-corrected ensemble than for the
ensemble, for all values of ozone. The FAR is a measure
of the number of false predictions of a given forecast
category, and ideally should be zero. The FAR for the raw
ensemble is small for low-ozone events, and increases with
increasing ozone. In contrast, the FAR for the bias-corrected
ensemble is nearly constant, and has lower values than the
raw ensemble for ozone values greater than 40 ppb. POD is
the fraction of those occasions when the forecast event
occurred on which it was also forecast, and has an ideal
value of unity. However, we find that the POD is lower for
the bias-corrected ensemble for ozone greater than 70 ppb
than for the raw ensemble. The better performance of the
raw ensemble is due to the high positive bias, which also
produces a higher FAR. The CSI is the number of correct

Figure 6. Scatterplot of the ensemble ozone prediction of the daily maximum 1 hour versus the
observed ozone for (a) without bias correction and (b) with bias correction. Colors indicate the number of
occurrences that fall within 1 ppb bins.
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forecasts divided by the number of cases forecast and/or
observed, and ideally should be unity. The CSI for the bias-
corrected ensemble is greater than for the raw ensemble for
observed ozone values less than 90 ppb, and is essentially
identical for ozone greater than 90 ppb. Finally, the Heidke
Skill Score, which is the percentage improvement in fore-
cast accuracy compared to random chance, is almost 50%
greater for the bias-corrected ensemble than for the raw
ensemble.

4. Ensemble Probabilities

[33] In addition to the higher skill shown by the ensemble
forecasts compared to individual models, a second advan-
tage of ensembles is that they provide probabilistic infor-
mation that allows for the uncertainty of a forecast to be
expressed quantitatively. We consider a variety of methods
for expressing the skill inherent in ensemble forecasts that
have been developed and/or applied by the meteorological
forecast community, and use them to asses the value of
ensemble ozone forecasts.

4.1. Rank Histogram

[34] One standard method for evaluating the behavior of
an ensemble is through the rank histogram (see Hamill
[2001] for an extensive discussion of the rank histogram). A
rank histogram is constructed by combining the n-member

predictions of the ensemble with the verifying observation
into a vector of length n + 1, and then sorting them from
highest to lowest (ozone) value. The rank of the verification
is then tallied, and a histogram computed by repeating the
process over many independent sample points. Ideally, the
verification values should have an equal probability of
occurring at each position in the vector, indicating that the
ensemble member forecasts and the observed state can be
considered to be random samples from the same probability
distribution.
[35] The rank histogram (Figure 8) of the uncorrected

ensemble members for 1-hour maximum ozone shows a
strongly sloped distribution associated with the positive
biases of the ensemble members, as the observed ozone
value is more frequently the lowest member of the vector,
and rarely is the highest. In contrast, the bias-corrected rank
histogram has almost no slope. Meteorological ensembles
often display a U shaped or concave rank histogram,
indicating that the ensemble has too little variability
and is underdispersive [e.g., Hamill and Colucci, 1997;
Stensrud and Yussouf, 2003]. The flat rank histogram of the
bias-corrected ozone ensemble shown in Figure 8 indicates
that it contains the proper amount of variability.

4.2. Attributes Diagram

[36] The forecast probability that the 1-hour max ozone
will exceed a given threshold can be equated with the

Figure 7. Contingency statistics (frequency bias, percent correct, false alarm rate, probability of
detection, critical success index, and Heidke skill score) of the ensemble (top) and the bias-corrected
ensemble (bottom).
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fraction of the 8 models in the ensemble that exceed that
threshold. An attribute diagram [Wilks, 1995] depicts the
skill of this probability forecast, and is simply a plot of the
forecast probability versus the observed frequency of oc-
currence. The attributes diagram for a threshold of 70 ppb is
shown in Figure 9; similar probability curves are found for a
wide range of threshold values. Ideally, the reliability curve
should follow the 1-1 slope. The ensemble curve shown is
blue lies below the ideal line for all forecast probabilities,
consistently overpredicting the probability that the ozone
would exceed 70 ppb. The bias correction technique reduces
by about one-half the tendency for overprediction at this
threshold level, bringing most of the forecast probabilities
above the no-skill line. Attempts to further improve the
reliability of the forecasts were made by using the informa-
tion from the rank histogram to calibrate the ensemble
probabilities using the method of Hamill and Colucci
[1997, 1998]. This calibration technique did not however
provide any significant improvement to the reliability of
either the ensemble or bias-corrected ensemble.

4.3. Relative Operating Characteristic (ROC) Curves

[37] Another way to utilize the probability information
inherent in an ensemble forecast is through a Relative
Operating Characteristic (ROC) diagram [Swets, 1973;
Mason, 1982]. This diagram compares the false alarm rate
(false positives) of a set of forecasts versus the hit rate (true
positives) for a given threshold, again shown in Figure 10
for a value of 70 ppb. The ideal forecast has no false alarms
and a perfect hit rate, which is the upper left corner. A single
deterministic model evaluated with a given observational
data set provides a single point on the plot (shown as
triangles for the raw individual models and squares for the
bias-corrected individual models). In contrast, an ensemble
forecast plots as a series of points, in our case when we have
1/8 models forecasting ozone >70 ppb, then 2/8, 3/8, etc.
Note that the ensemble and bias-corrected curves fall to the
left of the individual models, indicating improved skill.
Depending on a forecaster’s need to avoid false alarms,
various ensemble probability values can be selected. An
optimal choice (closest to the upper left corner) for the raw

Figure 9. Attributes Diagram for the ensemble (blue line) and bias-corrected ensemble (red line)
showing the forecast probability of surface ozone exceeding 70 ppb. Inset diagram shows the frequency
of usage of each 10% interval forecast probability category. Horizontal line indicates the climatological
frequency of the event in the observed data set (no resolution) and the diagonal dashed line indicates no
skill. Ideal probability forecast is indicated by the solid 1:1 slope diagonal line.

Figure 8. Rank histogram for the ensemble (blue) and bias-corrected ensemble (red).
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ensemble would be 4/8, but if it was especially important
for a forecaster to avoid false alarms, they might choose
5/8 or 6/8 (at the expense of a lower hit rate).
[38] Recently, T. M. Hamill and J. Juras (Common

forecast verification metrics can overestimate forecast skill,
submitted to Monthly Weather Review, 2006) have pointed
out that a common way of calculating ROC curves is to
assume that the climatology does not vary spatially or
temporally among the samples, but that this assumption
may produce an overestimation of forecast skill. To circum-
vent the problem of spatially varying climatology, the ROC
values shown in Figure 10 were calculated for each obser-
vation location, and these were then averaged. If the ROC
values had been calculated relative to a single mean
climatology averaged over all of the observation sites,
the resulting skill levels would have been �10% higher.
Because of the lack of a reliable long-term ozone climatol-
ogy, no attempt was made to estimate the contribution
of temporal variations in the ozone climatology over the
56 day observation period.

4.4. Spread-Skill Relationship

[39] Ensemble spread is a measure of how well the
various ensemble members agree on a given forecast, and
is usually taken as the standard deviation of the predicted
ozone concentrations. In an ideal ensemble forecast system,
one would expect that the spread of the forecasts of the
various ensemble members would be related to the skill of
the ensemble mean forecast. That is, when the ensemble
members disagree on the forecast, the skill of the ensemble
mean should be lower. Past studies of ensemble short-range
weather forecasts have shown mixed results for a spread-
skill relationship. Some have found little correlation be-
tween the skill of the forecasts and ensemble spread [Hamill
and Colucci, 1998; Stensrud et al., 1999; Hou et al., 2001],
while others [Kalnay and Dalcher, 1987; Grimit and Mass,

2002; Stensrud and Yussouf, 2003] have found significant
correlations.
[40] For the present data set the ensemble spread SP is

defined as

SP h; d; ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

Cn h; d; ið Þ � ~C h; d; ið Þ
� �2

vuut ð1Þ

where Cn is the concentration of ensemble member n, N = 8
is the number of ensemble members, ~C is the predicted
ensemble mean concentration, h is the forecast hour, d = (1,
49) is the day of the analysis, and i = (1, 342) is the site
location. The skill of the ensemble is defined in terms of the
mean absolute error of the ensemble mean prediction,

MAE h; d; ið Þ ¼ Cobs h; d; ið Þ � ~C h; d; ið Þ
�� �� ð2Þ

where Cobs is the observed concentration value. The spread-
skill relation is the correlation between SP and MAE.
[41] In calculating the spread-skill relationship of an

ensemble forecast system, often the data are averaged
before calculating the correlation coefficient. Hou et al.
[2001] average MAE and SP over the number of forecast
days d, and then calculate a spatial or ‘‘pointwise’’ corre-
lation of the two data vectors of length i at each forecast
hour h. Figure 11 displays the spread-skill correlation for
the raw ensemble (blue) and bias-corrected ensemble (red)
as dashed lines using this temporal averaging approach. The
spread-skill correlation for the raw ensemble reaches its
maximum value in the afternoon hours just before the ozone
peak (see Figure 2), when the boundary layer is well mixed
and growing. During the nighttime hours the spread-skill
relation drops and even becomes negative. In contrast, the
bias-corrected ensemble has a considerably higher spread-
skill correlation at all hours, including the late afternoon

Figure 10. Relative Operating Characteristic (ROC) curves from the ensemble (open triangles, blue)
and bias-corrected ensemble (open squares, red) for a surface ozone threshold of 70 ppb for 1-hour
maximum ozone. Values in 1/8 increments are shown for the raw ensemble. Solid triangle data points
indicate the raw individual models, and solid squares indicate the bias-corrected models, following the
color scheme for the various models listed at the top of the figure.
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hours (r = 0.5) when ozone reaches its peak concentrations.
We interpret the higher correlation for the bias-corrected
ensemble to be the result of the incorporation of information
on the spatially varying nature of the bias corrections.
[42] An alternative approach in calculating the spread-

skill relation is that of Grimit and Mass [2002], who used a
spatial averaging approach, in which the spread and skill are
averaged over all of the verifying sites i, and then correlated
in time though the number of daily forecasts d. We apply
this method by averaging the standard deviation of the
ensemble forecasts and the absolute error of the ensemble
mean from all 342 verification sites, creating two time series
of 49 days for each hour of the 22-hour forecast period.
These pairs of time series are then correlated and plotted
for each hour of the forecast period, and are shown as
solid lines in Figure 11 for the ensemble and bias-
corrected ensemble. The relative rankings of the raw and
bias-corrected ensembles for the pointwise correlation are
reversed compared to those found for the temporal corre-
lation method shown as dashed lines. The spread-skill
correlation for the raw ensemble is quite high, averaging
about 0.65 for all forecast hours. The maximum correla-
tion of 0.83 is found at 1600 UTC (1200 LST), but then
drops to approximately 0.55 at the time of peak surface
ozone (2100 UTC). In comparison to the raw ensemble,
the correlation for the bias-corrected ensemble is signifi-

cantly lower, averaging about 0.35 and dropping to only
about 0.2 in the late afternoon hours at the time of peak
ozone concentrations.
[43] The reason for the lower correlation for the bias-

corrected ensemble can be seen in Figure 12a, which shows
the time series of the daily 1-hour maximum ozone,
averaged over the 342 sites, for the 49 days of data
available, beginning on 13 July. Also shown in the lower
portion of the panel are time series of the ensemble spread
and mean absolute error. The MAE and spread both
gradually increase through roughly the first 22 days (with
some minor fluctuations), decrease significantly around day
24 (5 August), and then increase with time once again. In
addition, there are several other minor fluctuations in both
spread and skill (at days 3, 12, and 41) that are correlated as
well, and the overall correlation coefficient is 0.57. In
comparison, the time series of the bias-corrected MAE
and ensemble spread (Figure 12b, lower two curves) are
relatively constant in time, and have a correlation coefficient
of only 0.10. The bias correction technique reduces the
overall MAE and spread of the ensemble, but the 7-day
filter also reduces the temporal variation of both of these
quantities and reduces their correlation.
[44] Finally, we note that if the spread-skill relation is

calculated without averaging the data before calculating the
correlation, much smaller correlation coefficients are found.

Figure 11. Correlation between standard deviation of the ensemble forecasts (spread) and the absolute
error of the ensemble mean (skill), calculated over 49 forecast days and 342 sites at each hour of the
forecast cycle. Blue lines are for the raw ensemble, and red lines are for the bias-corrected ensemble.
Solid lines indicate that the spread and skill were spatially averaged over all sites and then temporally
correlated over the 49 forecast days. Dashed lines indicate that the spread and skill were temporally
averaged over the 49 forecast days and then spatially or ‘‘pointwise’’ correlated over the 342 sites.
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Correlating the spread and skill at each site over the number
of forecast days and then averaging over the sites gives
diurnal mean values of only 0.25 for the raw ensemble and
0.15 for the bias-corrected ensemble. Calculating the corre-
lations over the sites and then averaging these over the
number of forecast days gives diurnal mean values of only
0.15 and 0.13 for the raw and bias-corrected ensembles.
[45] An interesting aspect of the time series of area

averaged raw ensemble mean and observed 1-hour maxi-
mum ozone shown in Figure 12a (upper curves) is the large
amplitude oscillations that occur at approximately weekly
intervals. To examine the effect of day-of-the-week varia-
tions in emissions on ozone, we also plot in Figure 12a
vertical lines for each Saturday. Most of the local minimums
of observed ozone occur near weekends, and most of the
maximums occur near midweek. However, two out of the
seven minima occur on Fridays and one on a Thursday,
while one of the local maxima occurs on a Saturday. Also,
the temporal correlations of each model and the observed
ozone are all quite high, and not significantly different for

those models that use day-of-the-week varying emissions
(Eta-EMAQ, CHRONOS, AURAMS, BAMS 45, BAMS
15; mean r = 0.86), and those that do not (WRF1, WRF2,
STEM-2K; mean r = 0.84). Therefore we conclude that the
periodicity apparent in Figure 12a is predominantly due to
changes in the synoptic-scale meteorological pattern, which
occur on a roughly weekly timescale. We also note the high
correlation (r = 0.92) between the time series of the area
averaged raw ensemble mean prediction and the observed
ozone, as well as for the individual models. The implication
is that the models (including their chemical mechanisms)
and their ensemble do an excellent job of predicting ozone
changes due to the large-scale meteorology. In contrast, if
the correlation coefficient is calculated at each site sepa-
rately and then these coefficients are averaged, the mean
correlation is reduced significantly (r = 0.72). This reduc-
tion in correlation is due to errors in the spatial variation of
the meteorology and emissions in the models. Also we note
that the area-averaged bias-corrected ensemble (Figure 12b,
upper curves) has almost the same ozone correlation (r =

Figure 12. (a) Time series of the daily 1-hour maximum ozone, averaged over the 342 sites, for the
49 days of data available (beginning on 13 July) for each individual model (thin lines), the ensemble mean
(thick blue line), and observed values (thick black line). Also shown in the lower portion of Figure 12a are
time series of the ensemble spread (blue dashed line) and mean absolute error (black dashed line). Values
of the correlation coefficient are shown on the right for each model. (b) Same as in Figure 12a, expect for
the bias-corrected individual models and the bias-corrected ensemble (thick red line).
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0.90) than the raw ensemble (r = 0.92). We interpret this to
mean that there are no significant trends or slow varia-
tions in the area-averaged ozone biases, and that the
improvements due to the bias correction technique shown
previously are due to its ability to correct for spatially
varying biases due to local errors in the meteorology,
emissions and site representativeness.

5. Summary and Discussion

[46] The ICARTT/NEAQS-2004 air quality study pre-
sented a unique opportunity to create and evaluate a large
(eight member) multimodel ozone forecast ensemble. An
evaluation of the eight individual models demonstrated that
for the summer 2004, during which the eastern U. S.
experienced anomalously low ozone concentrations, all of
the eight models had significantly positive, diurnally vary-
ing biases. Therefore a temporal bias correction technique
was applied, where the magnitude of the bias correction was
the mean bias for each model calculated at each site and for
each hour of the day over the previous 7 days. This
technique eliminates the model’s biases at each hour of
the day, and produces a narrower and more symmetric
distribution of ozone errors. Although some individual
models have lower MAE and RMSE for 1-hour maximum
ozone than the raw ensemble, no individual model or
individual bias-corrected model is better than the bias-
corrected ensemble. The skill of the bias-corrected ensemble
(defined in terms of square of the correlation coefficient [r2],
RMSE, and MAE) increases slowly with correction length.
For MAE and RMSE most of the improvement comes after
1 day, while the improvement to r2 changes more slowly
with the length of the bias correction period. The relative
improvement of the bias-corrected ensemble over the var-
ious bias-corrected individual models is greater for r2 than
for MAE and RMSE. These results differ only slightly if
considering 1-hour or 8-hour daily maximum ozone con-
centrations, with the 8-hour maximum showing slightly
better model skill, as the longer averaging time helps reduce
short timescale meteorological variability.
[47] The bias correction technique in general produces

better categorical skill statistics (frequency bias, percent
correct, false alarm rate, probability of detection, and critical
success index) for most of the range of observed 1-hour
maximum ozone. Exceptions are the FAR for low-ozone
events, and the POD of high-ozone events (greater than
85 ppb). However, because of the low ozone values observed
throughout the summer of 2004, there are relatively few
values higher than 85 ppb which limits the significance of
the high-ozone statistics. The bias-corrected ensemble also
provides for a higher Heidke skill score than the raw
ensemble. Because of the very small number (less than
0.02%) of events during the summer of 2004 where the
surface ozone exceeded the daily 1-hour exceedance thresh-
old of 120 ppb, it would beworthwhile to repeat the ensemble
categorical analysis for a more typical ozone season.
[48] The use of an ensemble also provides important

probabilistic forecast information as depicted in attributes
diagrams and ROC curves. The raw ensemble significantly
overpredicts forecast probabilities due to the model’s pos-
itive biases. The bias-corrected ensemble eliminates most of
this overprediction of probabilities. ROC curves demon-

strate the superior skill of the ensemble and bias-corrected
ensemble over each of the individual models or bias-
corrected models.
[49] If calculating a spread-skill correlation using a tem-

poral average and correlating in space, the bias correction
technique is found to increase the correlation. However, if
averaging in space and correlating in time, the bias correc-
tion technique reduces the spread-skill correlation by filter-
ing out the temporal variations in skill present in the
models. A relatively high spread-skill correlation is found
for the spatially averaged raw ensemble (r = 0.64 averaged
over all hours) which may be due to the fact that we use a
multimodel ensemble where the models employ different
physical parameterization schemes.
[50] The high correlation between the spatially averaged

ensemble forecasts and spatially averaged observed 1-hour
maximum ozone (r = 0.92 for the raw ensemble) indicates
that the ensemble (as well as most individual models and
their chemical mechanisms) does an excellent job of fore-
casting the influences of large-scale meteorological vari-
ability, and that the large-scale emissions and the chemical
mechanisms are generally correct. In contrast, if the corre-
lation coefficient is calculated at each site separately and
then these coefficients are averaged, the mean correlation is
reduced significantly (r = 0.72). This difference indicates
that the greatest improvements to model skill can be
achieved through improving spatial variations of the mete-
orological forecasts as well as improving local emissions
variations.
[51] In light of the need to improve the local-scale

meteorology, the fact that the high and low-resolution
BAMS models (BAMS 15 and BAMS 45) generate almost
identical ozone skill levels, indicates that at least in some
models, greater horizontal resolution alone may not provide
a solution. Since the ensemble provides more skillful
forecasts as well as useful probability information, it pro-
vides an alternate route for improving air quality forecasts.
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